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Abstract-At critical incidence of equivoluminal waves, the wave motion is evanescent in the case of an
isotropic, elastic, hollow cylinder with traction-free cylindrical surfaces. Howevet, it is shown that in this
critical situation the Wave motion can be obtained by using a suitable limiting procedure.

In a cylindrical co-opdinate system (r, 8, z), consider an isotropic, elastic, hollow cylinder, with
generators parallel to the z-axis, inner radius r =a outer radius r =b, with common center and
of infinite extent otherwise. Let Aand p. be the Lame's constants and p the mass density of the
homogeneous, isotropic, elastic medium. In the case of axially symmetric waves, the motion of
the hollow cylinder with circular cross-section is described by two Bessel equations[l]

where

W= i e~r-::),
h2=(P!vp f-)'2,

k 2=(P!V.)2_)'2,

v/ =(A +2p. )!p,

v.2 = p.!p.

a<r<b (1)

(2)

The wave number in the axial direction is denoted by)', h·and k are the wave numbers in the radial
direction, VI' and v. are the wave speeds of the dilatational and shear waves in an unbounded
medium, and p is the circular frequency in rad. sec. For axially symmetric motion, u. == 0, Wr == 0,
w: == 0, awla8 =tawlI!(8) =0 and the third equation of motion for the circumferential direction (J

is satisfied identically. The two non-trivial stress components are expressed by the formulas

A 2 aUr
'T'rr= Al.l+ p. ar'

(3)

= (aUr+ aUs)
Tn p. aZ ar'

tTbis work was supported in part by the Oftice of Naval Research Contract NOOOI4-7S.c-0302 to the State University of
New York and the Air Force Grant AFOSR 74-2669 to Stanford University.
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We consider simple-harmonic motion of the form

u,=:: U(r)ixp(yz+pt),

Uz =:: W(r)ixp(yz+pt),
(4)

where exp (. , .) == exp i(...), and i is the fourth root of unity in the Argand plane. Then from (2)1 and
(2)2 we find that U(r) and W(r) are particular solutions of the equations

a2 u 1 au (1 2) U (iJl1 2' -)-+--- -+'Y =:: -+ l"'W
ar2 r ar r 2 ar T'

a2w taW 2W {. 2 a _}-+--- 'Y =:: l'Y I1 ---(rw)
Br2 r ar r ar '

(5)

where in these equations, and in the sequel, the exponentials have been suppressed for
convenience, and 11, cd are the general solutions of eqn (1).

The two ordinary differential eqns (1) are Bessel equations of integer order 0 and 1
respectively, which have asingularity as r ~0+, Therefore in the case of a solid cylinder we add
the requirement that 11 and cd be bounded as r ~ 0+. In the case of hollow cylinder we take the
general solution of the Bessel equations as

a<r<b (6)

where al(h), bl(h) and a~k), b2(k) are suitable functions of hand k, respectively. In the case of
critical reflection when either h or k tend to O+, the functions ah bl or a2, b2 are determined by
using d'Alembert's limiting procedure. The amplitude coefficients Ai> Bi (i =:: 1,2) are determined
by the boundary conditions on the two cylinderical surfaces r =:: a and r =:: b.

When 11 and ware given by eqn (6), the non-homogeneous part of the differential eqns (5) are

(7)

By using the method of undetermined coefficients, the particular solution of the
non-homogeneous differential eqn (5) can easily be determined and is given by

U(r) =:: 2 h h 2{aIAIlt(hr) +blBIYI(hr)}- 22iYk2 {a2 A2JI(kr) + b2B2YI(kr)}, (8)
'Y+ y+

-iy 2k
W(r) =:: 1 2 +h 2 {aIA1Jo(hr) +blBI Yo(hr)} + 'Y2+ e {a2A 2Jo(kr) +b2B2Yo(kr)},

where in these expressions h > 0 and k > O. The radial wave-numbers hand k are both real when
p ~ 'YVp, h becomes imaginary and k remains real when yv. s p < yVp, and both become
imaginary when p < yv•. When p = 'YVp, h =:: 0+ and k real; and when p =:: 'YV.. h is imaginary and
k =:: 0+. When h =:: 0+, we have the case of grazing incidence of dilatational waves, and k =:: 0+
corresponds to the case of grazing incidence of equivoluminal waves.

The coefficients a. and bi have still to be determined. We consider here the case of grazing
incidence of equivoluminal waves when k ~O+ and h is imaginary, In this critical case, eqn (lh
degenerates into Euler's equation of second order, whose general solution is

(9)
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It is therefore necessary that the coefficients Q2(k) and b2(k) in eqn (6)2 be such that

(i) lim {a2(k)Jt(kr)} = r,
k-oO+

(10)

Using d'Alembert's limiting procedure and making use of the properties of Bessel functions, we
find that a2 and b2 are the solutions of

(i) ..!. (.1)I = !
dk a2 k-oO+ 2'

(ii) d~ b2 lk-oO+ = - ~ ?T.

(11)

Therefore in the critical case of grazing incidence of equivoluminal waves when h is imaginary
and k -+ 0+, the coefficients ai and bi are

(12)

One can similarly find the value of these coefficients in the case of grazing incidence of dilatation
waves when h -+0+ and k remains real. However, in this brief note we will not further discuss
this case, as the analytical procedure is similar to the case when k -+ 0+.

Therefore, a suitable solution of eqn (1), which in the limiting case contains the solution of
critical reflection of equivoluminal waves in a hollow cylinder, is given by

11= Atfo(,hr)+BtYo(hr), O<h <;00,

td = A2iUkr) - B2I kYt(kr), 0:$ k < 00.

The displacement components are given by

(13)

(14)

where again 0< h < ; 00, 0:$ k < 00. With 4 and td given by eqn (13), we rewrite the displacement
components in the convenient form

(15)
_ - ;1 1 2 a _

W(r) - (12 +h~ 11 + 1 2+P rar (rli).

From (3) and (15), we find that the stress components are given by

(16)



266 R. K. KAUL and G. HERRMANN

Substituting for A and wfrom eqn (13), we find that eqn (16) takes the form

(17)

where as before 0 < h < ;co, 0 s k < co.
In the critical case when k =0+ and 0< h < ;co, the limiting form of stresses can easily be

determined from eqn (17). Using de I'Hopital rule, the stresses are

where ho=hlk...o+.
When k =0+, we find from (2)4 that 'Y = P/v. and from (21 we get

where u=v./vp • In terms of non-dimensional frequency 0 = p/(U., where (Us (= 7Tv./2/) is the
lowest antisymmetric thickness-shear frequency of an infinite, isotropic, elastic plate of thickness
21 (=(b - a», we find that in the critical case of grazing incidence of equivoluminal waves

h = i7T 0(1- ( 2)1/2 0 < u < I
o 2t '

where

and II is the Poisson's ratio of the elastic medium.

(19)

(i) Hollow Cylinder
In the case of a concentric hollow cylinder of circular cross-section, vanishing of the stresses

at the inner and outer surfaces gives us the frequency equation

A(y2+ ho2)Jo(hoa)+2,."hJ;(hoa) A('Y 2+ho2)Yo(hoa) + 2,."hoY;(hoa)
4,." 4,."
'Y - 'Ya2

A('Y2+ h0
2)Jo(hob) + 2,."hJ:<hob) A('Y2+ h0

2)Y O<hob) + 2,."hoY;(hob)
4,." 4,."
y - yb 2

=0,

'YhoYt(hoa)
1

yhJt(hoa) a
a

yhoYt(hob) b
I

yhJt(hob) b (20)

where J;(hoa) = (a/aa)Jt(hoa), ..., and Yi(hob)=(alab)Y\(hob). Using Laplacian expansion
and deleting common terms in the expansion, and introducing modified Bessel functions of real
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argument 1,,(9) and K,,(e), the frequency equation in the critical case of grazing incidence of
equivoluminal waves is given by

~ (1- ."2)8a8,,DoJ..ea, e,,) +(1- O'2)ea{(3 + .,,2)DOI(ea, e,,) -4."Do,(ea, ea)

-4Do,(9", 8,,)}+(1-O'2){(1 +3."~8,,D,o(8a, 8,,)

+6(1- .,,2)(1- O'2)Du(8a, 8,,)} = 0, (21)

where

DoJ..8a, e,,) = {lo(8a)Ko(8,,) - lo(8,,)Ko(8a)},

Do,(8a, 8,,) ={Io<8a)K,(8,,)+ It(8,,)Ko(8a)},

D,o(8a, 8,,) = {It(8.. )Ko(8,,)+lo(8,,)Kt<8.. )},

Du(ea, 8,,) ={1,(8a)K,(8,,)-lt(8,,)K,(ea)},

Do,(ea, 8a) = {Io(ea)K,(8a)+1,(8a)Ko(8a)},

Do,(e", 8,,) = {Io(8,,)K,(8,,) + It(8,,)Ko(8,,)},

8 = 7Ta 0(1 _ O' 2}1/2
a 2t '

8" = ;:0(1- O'~I/2,

1/ = alb, a < band 2t = (b - a).

(22)

This transcendental equation has a single root which is relatively easy to compute. In
particular, finding this root of the equation does not present the problem of "spurious roots"
which Gazis encountered in the investigation of a similar problem, at grazing incidence ([2] p.
274). Using asymptotic expansion of the "Hankel" type for large argument and fixed order, the
frequency equation reduces to the form

where

1(, == (3 + .,,~(1 +3.,,) - (I +31/ 2}(l +3/.,,) +48(1- O'~(I- .,,2),

1(2 == (1- ."y+ 16(1 - 0'2)(1 +1/ )2.

To a first approximation this equation is satisfied when

(23)

(24)

(25)

(0) Solid Cylindert
In the case of solid cylinder of radius r = b, a -+0, .,,-+0, 8a -+0 and the frequency equation

tProf. R. D. Mindlin has recently brouaht to our attention, that the critical reflection of waves in an isotropic, elastic plate
was investipted by him in his paper, "Mathematical Theory of Vibrations of Elastic Plates", Proceedings ofthe Eleventh
AIlIlIUJI Symposilml all FreqllellCY COlltrol, pp. 17-40; U.S. Army Signal Corps Engineering Laboratories, Fort Monmouth,
New Jersey, (l9S7). A remark in our earlier paper published in this journal, (1916), Vol. 12, pp. 353-357, that "Such critical
reflections of elastic waves... in the case of plates, ... seems to have been overlooked in the literature", was thus clearly
inappropriate.
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reduces to the simple form

R. K. KAUL and G. HERRMANN

On further simplification, we get the frequency equation

(26)

where

(27)

since for a solid cylinder 11 :::: 2t. This equation was first obtained by Onoe, et al. [3J, as a limiting
form of Pochhammer frequency equation[4], by making use of modified quotient of Bessel
functions .:l',,(z)=zJ,,(z)/J"+I(z). This frequency equation has only one real root given by

(J "'" l~ (47 +5\165) - 3 ( 1+5~65) 0:7. +... 0(0:4
).

For 11:::: 0.31, we find that

(28)

where 8 is the first root of the equation J\(8) =: O. This is the point of intersection of the
extensional branch with line OE in Fig. 2 of Ref. [3].

In this critical case, the ratio of the amplitude coefficients is

(29)

and the displacement components are

(30)

and bi:::: A7.r.
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